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We investigate classes of systems based on different atiengpatterns with the aim of achieving
distributability. As our system model we use Petri nets. étrifhets, an inherent concept of simul-
taneity is built in, since when a transition has more than mneplace, it can be crucial that tokens
are removed instantaneously. When modelling a system wiithiended to be implemented in a
distributed way by a Petri net, this built-in concept of dyranous interaction may be problematic.
To investigate the problem we assume that removing tokens flaces can no longer be considered
as instantaneous. We model this by inserting silent (unebbée) transitions between transitions
and their preplaces. We investigate three different patéar modelling this type of asynchronous
interaction.Full asynchronyassumes that every removal of a token from a place is timeucoing.
For symmetric asynchronyokens are only removed slowly in case of backward branttaeti-
tions, hence where the concept of simultaneous removadihctccurs. Finally we consider a more
intricate pattern by allowing to remove tokens from preptacf backward branched transitions asyn-
chronously in sequencagymmetric asynchroiy

We investigate the effect of these different transfornretiof instantaneous interaction into asyn-
chronous interaction patterns by comparing the behaviolungts before and after insertion of the
silent transitions. We exhibit for which classes of Petrisn@e obtain equivalent behaviour with
respect to failures equivalence.

It turns out that the resulting hierarchy of Petri net classan be described by semi-structural
properties. In case of full asynchrony and symmetric assorgh we obtain precise characterisations;
for asymmetric asynchrony we obtain lower and upper bounds.

We briefly comment on possible applications of our resultdéssage Sequence Charts.

1 Introduction

In this paper, we investigate classes of systems basedferetif asynchronous interaction patterns with
the aim of achieving distributability, i.e. the possibilib execute a system on spatially distributed loca-
tions, which do not share a common clock. As our system modelse Petri nets. The main reason for
this choice is the detailed way in which a Petri net represantoncurrent system, including the inter-
action between the components it may consist of. In an gagihg based model of concurrency such
as labelled transition systems modulo bisimulation seitsna system representation as such cannot
be said to display synchronous or asynchronous intergdciobest these are properties of composition
operators, or communication primitives, defined in termsuath a model. A Petri net on the other hand
displays enough detail of a concurrent system to make treepoe of synchronous communication dis-
cernible. This makes it possible to study asynchronous aamication without digressing to the realm
of composition operators.

*This paper was partially written during a four month stay .e\d Schicke at NICTA, during which he was supported by
DAAD (Deutscher Akademischer Austauschdienst) and NICTA.
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Figure 1: Transformation to the symmetrically asynchranimoplementation

In a Petri net, a transition interacts with its preplaces daystiming tokens. An inherent concept of si-
multaneity is built in, since when a transition has more thae preplace, it can be crucial that tokens are
removed instantaneously, depending on the surroundingtste or—more elaborately—the behaviour
of the net.

When modelling a distributed system by a Petri net, thigdimitoncept of synchronous interaction may
become problematic. Assume a transitiaon a location models an activity involving another location
', for example by receiving a message. This can be modelled gog@aces of ¢ such thats andt
are situated in different locations. We assume that takituk@n can in this situation not be considered
as instantaneous; rather the interaction betweandt takes time. We model this effect by inserting
silent (unobservable) transitions between transitiorts tarir preplaces. We call the effect of such a
transformation of a nelV anasynchronous implementatiaf N.

An example of such an implementation is shown in Figure 1.eNbata can be disabled in the im-
plementation before any visible behaviour has taken plabés difference will cause non-equivalence
between the original and the implementation under braigctine equivalences.

Our asynchronous implementation allows a token to stajpitmey from a place to a transition even
when not all preplaces of the transition contain a tokens Teisign decision is motivated by the obser-
vation that it is fundamentally impossible to check in anratyonous way whether all preplaces of a
transition are marked—it could be that a token moves bacKantil between two such places.

We investigate different interaction patterns for the abyanous implementation of nets. The simplest
pattern {ull asynchrony assumes that every removal of a token from a place is timewnimg. For

the next patterndymmetric asynchrofytokens are only removed slowly when they are consumed by a
backward branched transition, hence where the concephoftsineous removal actually occurs. Finally
we consider a more intricate pattern by allowing to remokens from preplaces of backward branched
transitions asynchronously in sequenasyfnmetric asynchroiy

Given a choice of interaction pattern, we call a @étasynchronousvhen there is no essential be-
havioural difference betweeN and its asynchronous implementatibfiV). In order to formally define
this concept, we wish to compare the behaviourd/aind (V) using a semantic equivalence that fully
preserves branching time, causality and their interplayilsivof course abstracting from silent transi-
tions. By choosing the most discriminating equivalencesitids, we obtain the smallest possible class
of asynchronous nets, thus excluding nets that might bsifiexs as asynchronous merely because a less
discriminating equivalence would fail to see the differemdetween such a net and its asynchronous
implementation. To simplify the exposition, here we merynpare the behaviours &f and(N) up

to failures equivalencs]. This interleaving equivalence abstracts from catigalnd respects branching
time only to some degree. However, we conjecture that outtseare in fact largely independent of this
choice and that more discriminating equivalences, sucheaistory preserving ST-bisimulation of [20],
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would yield the same classes of asynchronous nets. Usimgparltime equivalence would give rise to
larger classes; this possibility is investigated in [18].

Thus we investigate the effect of our three transformataimsstantaneous interaction into asynchronous
interaction patterns by comparing the behaviours of ndtsdand after insertion of the silent transitions
up to failures equivalence. We show that in the case of fylhelsrony, we obtain equivalent behaviour
exactly for conflict-free Petri nets. Further we establisht tsymmetric asynchrony is a valid concept
for N-free Petri nets and asymmetric asynchronyNbfree Petri nets, wherd andM stand for certain
structural properties; the reachability of such structusecrucial. For symmetric asynchrony we obtain
a precise characterisation of the class of nets which isciisgnously implementable. For asymmetric
asynchrony we obtain lower and upper bounds.

In the concluding section, we discuss the use of our resutsléssage Sequence Charts, as an example
how they may be useful for other models than Petri nets. Whiamgreting basic Message Sequence
Chart as Petri nets, the resulting Petri nets lie within thescof conflict-free and hend¢-free Petri nets.
The more expressive classes give insights in the effectaitehk in non-basic MSCs.

The paper is structured as follows. In Section 2 we estalttishnecessary basic notions. In Section
3 we introduce the fully asynchronous transformation ane gi semi-structural characterisation of the
resulting net class. In Section 4 we repeat those stepsdaytinmetrically asynchronous transformation.
Furthermore we describe how the resulting net class retatdse classes of free-choice and extended
free choice nets. In Section 5 we introduce the asymmdiriealynchronous transformation. We give

semi-structural upper and lower bounds for the resultirtgctsess and relate it to simple and extended
simple nets. In the conclusion in Section 6 we compare ouirfiysdto similar results in the literature.

An extended abstract of this paper will be presented at thelfiteraction and Concurrency Experience
(ICE’08) on Synchronous and Asynchronous Interactions in Concurrésttibuted Systemsand will
appear inElectronic Notes in Theoretical Computer Sciereisevier.

2 Basic Notions

We consider here 1-safe net systems, i.e. places nevermang than one token, but a transition can
fire even if pre- and postset intersect. To represent unedigier behaviour, which we use to model
asynchrony, the set of transitions is partitioned into olmae and silent (unobservable) ones.

Definition 2.1
A net with silent transitionss a tupleN = (S, 0, U, F, M) where

— Sis a set (ofplacey,

— O is a set (ofobservable transitions

— U is a set (ofilent transition$,

- FCSxTUT x S (theflow relation with T" := O U U (transitiong and
— My C S (theinitial marking).

Petri nets are depicted by drawing the places as circledrdhsitions as boxes, and the flow relation
as arrows drcs) between them. When a Petri net represents a concurresnsyatglobal state of such
a system is given as marking a set of places, the initial state beifgy. A marking is depicted by
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placing a dottoken in each of its places. The dynamic behaviour of the reptesesystem is defined
by describing the possible moves between markings. A markimay evolve into a marking/’ when

a nonempty set of transitiors fires. In that case, for each a(s, ¢t) € F' leading to a transitionin GG, a
token moves along that arc frogrto ¢. Naturally, this can happen only if all these tokens arelalld in

M in the first place. These tokens are consumed by the firingalbatnew tokens are created, namely
one for every outgoing arc of a transition@ These end up in the places at the end of those arcs. A
problem occurs when as a result of firitgmultiple tokens end up in the same place. In that dele
would not be a marking as defined above. In this paper we ¢eattention to nets in which this never
happens. Such nets are caltedafe Unfortunately, in order to formally define this class of)awe
first need to correctly define the firing rule without assumingafety. Below we do this by forbidding
the firing of sets of transitions when this might put multipd&ens in the same place.

Definition 2.2 Let N = (S,0,U, F, My) be a net. Let\;, My C S.

We denote the preset and postset of a net elemdmyt®z :=
(z,y) € F} respectively. A nonempty set of transitio6s C
from M to My, notationM; [G) ny Ma, iff

{y ] (y,z) € F} andz® := {y |
(OUU),G # @, is called astep

— all transitions contained i areenabled that is
VteG.*tC M AM\*)Nt* =3,
— all transitions ofG areindependentthat isnot conflicting
Vi,bue Git£u. tN*u=aAt*Nu* =9,

— in M, all tokens have been removed from theplacesof G and new tokens have been
inserted at th@ostplaceof G:

M2:<M1\U‘t>UUt°.

teG teG

To simplify statements about possible behaviours of netsise some abbreviations.

Definition 2.3 Let N = (5,0, U, F, My) be a net with silent transitions.

(
- —ny C iP S) ( ) X T(S) is defined byMl —>N My & GC O /\Ml[G>NM2
- N CP(S) x P(S) is defined byM; ——x My < 3t € U. My [{t})n M;
(S)

— =y C P(8) x O* x P(S) is defined byM; 2=t M,

7 * {t1} 7 * {t2} T % 7 * {tn} T *
My —N—N—N—N—N " —N—N—N M2

WhereiﬁkV denotes the reflexive and transitive closure-6f y.
We write M, iN for IM5. M, iN My, My f’;N for BM,. M, iN M5 and similar for
the other two relations.

A marking M is said to baeachableiff there is ac € O* such thatM, == M;. The set of all
reachable markings is denoted [By,)
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We omit the subscripdV if clear from context.

As said before, here we only want to consider 1-safe netsn&by, we restrict ourselves tontact-free
netswhere in every reachable markidd; € [M,) forall ¢ € O U U with *t C M,

(M \*)Nt* =2 .

For such nets, in Definition 2.2 we can just as well consideamsitiont to be enabled ii/ iff *t C M,
and two transitions to be independent wlem *u = @. In this paper we furthermore restrict attention
to nets for which®t # (), and®t and¢*® are finite for allt € O U U. We also require the initial marking
M, to be finite. A consequence of these restrictions is thataltihable markings are finite, and it can
never happen that infinitely many independent transitisasaabled. Henceforth, we employ the name
7-netsfor nets with silent transitions obeying the above restit, andplain netsfor 7-nets without
silent transitions, i.e. witl/ = (.

Plain nets have the nice property of being deterministc the marking obtained after firing a sequence
of transitions is uniquely determined by the sequence ofttians fired.

Lemma2.1l LetN = (S,0,9, F, M) be a plain nety € O* andM C S.
If M == My A M == M, thenM; = Ms.

Proof Lett€O,0cO*andM’' C S.

ThenM <24 M7 & M 2 a7 andar 2 v impliesM' = (M \ *t) Ut®.

HenceM {:t}> My ANM {:t}> My implies My = M.

The result follows for a trace by induction on the length of. O

Our nets with silent transitions can be regarded as spktialled netsdefined as in Definition 2.1, but
without the split ofT" into O andU, and instead equipped withl@elling function? : T — Act U {7},
whereActis a set olvisible actionsaandr ¢ Act an invisible one. Nets with silent transitions correspond
to labelled nets in which no two different transitions arfediéed by the same visible actions, which can
be formalised by taking(t) = t fort € O and{(t) = 7 fort € U.

To describe which nets are “asynchronous”, we will complagé behaviour to that of their asynchronous
implementations using a suitable equivalence relatiorexfpained in the introduction, we consider here
branching time semantics. Technically, we use failure$vatgnce, as defined below.

Definition 2.4 Let N = (S,0,U, F, M,) be ar-net,c € O* andX C O.

<o, X> is afailure pair of NV iff
IMy. My =% My A My - AVE€ X. My S5
We define (N) := { <o, X> | <o, X> is afailure pair ofV}.

Two 7-netsN and N’ arefailures equivalentN ~ g N', iff #(N) = % (N’).

A t-netN = (S,0,U, F, M) is calleddivergence freeff there are no infinite chains of markings
M, SN Mo LN with M € [M0>
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3 Full Asynchrony

As explained in the introduction, we will examine in this paglifferent possible assumptions of how
asynchronous interaction between transitions and theplaces takes place. In this section, we start
with the simple and intuitive assumption that the removalof token by a transition takes time. This is
implemented by inserting silent transitions between lésdnes and their preplaces.

Definition 3.1 Let N = (S,0, @, F, My) be a plain net.

Thefully asynchronous implementatiaf NV is defined as the net
FI(N) := (SUST,0,U", F', My) with
ST = {s;|te€O,s €t}
U':= {ts |t € O,s € *t}and
F':i= (FN (O x8)U{(s,ts), (s, 5¢), (st,t) | t € O, s € *t}.

For better readability we will use the abbreviations:= {y | (y,z) € F'} andz® := {y | (z,y) € F'}
instead of*x or 2* when making assertions about the flow relation of an impldatiem.

The following lemma shows how the fully asynchronous impetation of a plain nelV simulates the
behaviour ofV.

Lemma3.1 LetN = (S,0,9, F, M) be a plain net C 0,0 € O* andM;, My C S.

1 1f My Sy MythenM; 5 )~ opi(n) Ma.
2. If My == M, thenM =gy Mo.

Proof Assumel/; iw Ms. Then, by construction dfl(V),
M [{ts |[te G, se thrw [{t |t € GHrw) Ma.

The first part of that execution can be split into a sequenaingietons.
The second statement follows by a straightforward indaatio the length of. O

This lemma uses the fact that any markingMfis also a marking orFI(N). The reverse does not
hold, so in order to describe the degree to which the behawibEl (V) is simulated byN we need to
explicitly relate markings ofl (V) to those ofN. This is in fact not so hard, as any reachable marking of
FI(N') can be obtained from a reachable markingvaby moving some tokens into the newly introduced
buffering placess;. To establish this formally, we define a function which tfan:is implementation
markings into the related original markings, by shiftingsb tokens back.

Definition 3.2 Let N = (S,0, , F, M) be a plain net and Il (N) = (SU S™,0,U’, F', My).
T : SUST — Sis the function defined by

“(p) s iff p=s;withs; € S7,s€ S5,t €0
T =
b p otherwise(p € S)
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Where necessary we extend functions to sets elementwider 8oy M C S U ST we haver— (M) =
{T7(s) | se M} =(MNS)U{s|s € M}. Inparticular,r (M) = M whenM C S.

We now introduce a predicateon the markings oFI (V) that holds for a marking iff it can be obtained
from a reachable marking a@¥ (which is also a marking ofl(NV)) by firing some unobservable tran-
sitions. Each of these unobservable transitions movesemtfyhkm a places into a buffering places;.
Later, we will show thaty exactly characterises the reachable markindgs @V). Furthermore, as every
token can be moved only once, we can also give an upper bouhdvemany such movements can still
take place.

Definition 3.3 Let N = (S,0, @, F, M) be a plain netan&l(N) = (SUS7,0,U’, F', My).
The predicatex C P(S U S7) is given by

a(M) & 77 (M) € [My)ny ANVp,ge M. 77 (p) =7"(q) = p=gq.

The functiond : P(SUS™) — INU {oc} isgivenbyd(M) := | M N{s|s € S, s*# &}|, where
we choose not to distinguish between different degreedfioitipn

Note thata (M) implies|M| = |7 (M)|, and reachable markings 6f are always finite (thanks to our
definition of a plain net). Hence(M) impliesd(M) € IN. The following lemma confirms that our
informal description ofx matches its formal definition.

Lemma 3.2 Let N andFI(V) be as above andlf C S U S7, with M finite.

*

ThenVp,qge M. 7 (p) =7 (q) = p=qiff 77 (M) L>,;|(N) M.

Proof Given thatr— (M) C S, “if” follows directly from the construction ofI ().
For “only if”, assumevp,q € M. 7 (p) = 77 (q) = p = q. Thent™ (M) [{ts | st € M })r(v) M. O

Now we can describe how any net simulates the behaviour ffliysasynchronous implementation.

Lemma 3.3 Let N andFI(NV) be as abovei; C O, 0 € O*andM, M’ C SUS".
1. a(My).
2. If a(M) A M —Logy ) M thent— (M) <y 7 (M") A a(M).
3. If a(M) A M —gyvy M’ thend(M) > d(M') AT (M) =77 (M') A a(M').
4. If My ==g(vy M’ thenMy ==y 7 (M) A a(M).

Proof (1): My € [Mp)ny andVs € My C S. 7 (s) = s.

(2): Supposey(M) and M ipl(m M’ with G C O. Sor— (M) is a reachable marking d¥.
Lett € G. Sincet is enabled inV/, we have®t C M and hence~ (°t) C 7 (M). By construction,
°t ={s: | s € °t} soT(°t) = *t. Given that\V is contact-free, it follows thatis enabled i~ (M ).

Now lett,u € G with ¢t # u. If s € *t N *uthens; € °t ands, € °u, SOs:, s, € M. However,
7 (s¢) = 77 (s4), contradictinga(M). Hence®t N *u = (. Given that*t U*u C 77 (M) and N is
contact-free, it follows that alst? N u®* = () and hence andu are independent.
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We will now show that<TH(M) U 't) Ul =)

teG teG

M =(M\{s|se’t, teGHuUis|set°’ teG}
=(M\{st|se®t,teG}HU{s|set® teG}.

Thereforer=(M') =77 (M \{s; | s€*t, t e G}) Ut ({s|s et t € G}).

Take anyt € G and anys € *t. Thens; € M anda(M) impliess¢ M Afuc O. u # t A s, € M.
Hencer= (M \ {s;|se€®,tc G}) =7"(M)\ {s|s € *t, t € G}. Thus we find

To(M)=7"(M)\{s|se®t teG}U{s|set’ teG}

and conclude that— (M) N T (M').

Next we establiskw()M"). To this end, we may assume tlats a singleton set, fa& must be finite—this
follows from our definition of a plain net—and whé [{t, t1,. .., t,})M’ for somen > 0 then there
areMy, Mo, ..., M, with M[{to}) My[{t1})M> - - - M, [{t,})M’, allowing us to obtain the general case
by induction. So leG = {t} witht € T..

Above we have shown that—(M') € [My)y. We still need to prove thatp,q € M'. p # q =
77 (p) # 7 (¢). Assume the contrary, i.e. there arg; € M’ withp # ¢ A 7 (p) = 77 (¢). Since
a(M), at least one op andg—sayp—must not be present if/. Thenp € t° =t* C S. As77 (q) =
7 (p) = pandq # p, it must be thay € S™. Henceg ¢ t°, sog€ M,andp = 7 (¢q) € 7 (M). As
shown abovet is enabled in-— (M). By the contact-freeness of, (7 (M) \ *t) N¢* = 0, sop € *t.
Hencep; € °t C M. As by constructioritnt® = (), we havep; & M’, soq # pi. YetT(q) = 7 (pr),
contradictinga ().

(3): Letts € U’ such thatM [{ts})ri(3yM'. Then, by construction dfI(N), °ts = {s} AN ts° = {s¢}.
HenceM’ = M\{s}U{s;} andd(M') = d(M)—1A7"(M') = 7= (M). Moreovera(M') < a(M).

(4): Using (1-3), this follows by a straightforward indwetion the number of transitions in the derivation
My :o>|:|(N) M. (|

It follows that« exactly characterises the reachable markinds @V). Using this it is not hard to check
that implementations of contact-free nets are contaet-fiad hence-nets.

Proposition 3.1 Let N andFI(N) be as before and/ C SU S™.
2. FI(N) is contact-free.
3. FI(N) is ar-net.

Proof (1): “Only if” follows from Lemma 3.3(4), and “if” follows byLemmas 3.1 and 3.2.

(2): Let M € [Mo)fi(n)- Thena(M), and hence ™ (M) € [Mo) -

Consider any € O with °t C M. Assume(M \ °t) Nt° # &. Sincet® = t* C S'letp € S be such that
p € M Nt°andp ¢ °t. As N is contact-free we have— (M) \ *t) Nt* = (), so sincep € 7 (M) N¢*
it must be thap € *t. Hencep; € °t C M and we have # p, yetT (p) =p=71"(p;), violating a(M ).
Now consider any,, € U’ with °t,, C M. As°t, = {p} andt,® = {p;} we have thatM \°t,)Nt,° # &
only if p € M A p, € M. However,r(p) = p = 7 (p;) which would violatex(M).

(3): By construction M| is finite, °t # (), and°t andt® are finite for allt e O U U’ O
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Figure 2: A net which is not failures equivalent to its fullgymchronous implementation

By Lemma 3.3(3) implementations are always divergence free

Proposition 3.2 Let NV be a plain net. TheRI(V) is divergence free. O

Whereas in a plain nelV for any sequence of observable transitiense O* there is at most one
marking M with My == M, in its fully asynchronous implementatid (V) there can be several such
markings. These marking®’ differ from M in that some tokens may have wandered off into the added
buffer places on the incoming arcs of visible transitions. adconsequence, a visible transitiothat is
enabled inV/ need not be enabled W’'—we say that irFl (V) ¢ can be refused after. This may occur

for instance for the neV of Figure 2, namely witle = ¢ (the empty sequence)/ the initial marking

of N, M’ the marking ofFI(V) obtained by firing the rightmost invisible transition, ang a.

When this happens, we haver, {t}> € .Z(FI(N)) \ .# (), so the netsV andFI(N) are not failures
equivalent. The direction from implementation to origiighicer however as every transition enabled
in the implementation must also have been enabled in thénatiget. Hence the only difference in
behaviour between original and implementation can coon$iatiditional failures in the implementation.

Proposition 3.3 Let N andFI(N) be as before. The&# (N) C .Z(FI(N)).

Proof Let <o, X> €.%(N). Applying Lemma 2.1, lef\/; C S be the unique marking a¥ such that
My ==y M;. By Lemma 3.1 alsdy == () M1. Soa(M:). As M, C S we haver—(M;) =M.
By Proposition 3.2 there exists a markiddg, with M, :€>F|(N) Mo N\ Mo J—>F|(N). Lemma 3.3(3)
yields7 (M) = 77 (M7) A a( My).

Suppose<o, X> ¢ ZF(FI(N)). ThenM, ﬂm(m M for somet € X and marking)Ms; of FI(N).
Lemma 3.3(2) yields\f; = 7 (M) = 77 (M>) AUR 7 (M3), which is a contradiction. O

If the wandering off of tokens inte-transitions never disables a transition that would be kedatither-
wise, then there is no essential behavioural differencedest N andFI(V), and they are equivalent in
any reasonable behavioural equivalence that abstraatssitent transition firings. In that cas#, could
be calledfully asynchronous

Definition 3.4

The class ofully asynchronous nets respecting branching time eqeiadis defined as
FA(B) := {N | FI(N) =& N}.

As for any plain nefV we have# (N) C .% (FI(N)), the class of netBA(B) can equivalently be defined
asFA(B) := {N | Z(FI(N)) C .Z#(N)}.
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It turns out that there exists a quite structural charasaéon of those nets which are failures equivalent
to their fully asynchronous implementation.

Definition 3.5 Let N = (5,0, @, F, M) be a plain net
N has a partially reachable confliaff 3t,u € O.t # uA*tN*u # @and3IM € [My). *t C M.

The netsV of Figures 2 and 3, for instance, have a partially reachatndict.

Theorem 3.1 A plain netN is in FA(B) iff N has no partially reachable conflict.

Proof LetN = (S,0,9,F, My)andFI(N) = (SUS™,0,U’, F', My).
“=": AssumeN has a partially reachable conflict. Then there eXiatc O, ¢ # u,c € O*andM; C S
such thatMy == M, *t N *u # @ and*t C M,. By Lemma 2.1 we know thato, {t}> ¢ .Z(N).

On the other hand}/, :”>F|(N) M; by Lemma 3.1. Lep € *¢t N *u. Then, by construction dfl(N),
there exists an\l, C S U ST W|th Ml[{up}>M2, gé M, and sincet # u alsop; ¢ M. Now let
Mz C S U ST such thathM, —>F|(N) Ms A Ms 4—>F|(N (which exists accordln? to Proposition 3.2).
SinceVv € U'.p ¢ v* A (pr € v* = p € *v) we know thatp, ¢ Ms. ThusM; — and there exists a
failure pair <o, {t}> € Z(FI(N)). HenceZ (FI(N)) # .#(N), soN ¢ FA(B).

‘<" AssumeN ¢ FA(B). ThenZ (FI(N)) # .#(N) and henceZ(FI(N)) \ .#(N) # @ by
Proposition 3.3. Let<o, X> € Z(FI(NV)) \ #(N). Then there exists af/; C S U S7 such that

My :>FI(N) My N My < AVt € X. M, —:[‘—}> By Lemma 3.3(4) we havé/, :J>N T(_(Ml).

Lett € X such thatr— (M) {—>N (which exists, otherwise<o, X> € % (N)). Letp € *t such that

pr ¢ M (suchp, exists, othenmseMl QH(N) Sincer (M) ﬂ»N it follows thatp € 7 (My).
Butp ¢ M, for otherwiselM; —>F|( )» which would be a contradiction. Hence there must existsesom
u € O with p, € M7 andu # t. By construction ofl(/NV) we havep € *u. Thust,u € O At # u A
‘tNu # SNT (M) € [Mo)n A*t C 7 (M;) andN has a partially reachable conflict. O

4  Symmetric Asynchrony

For investigating the next interaction pattern, we changenmtion of asynchronous implementation
of a net. We only insert silent transitions wherever a tt@osihas multiple preplaces. These are the
situations where the synchronous removal of tokens isyreaential.

Definition 4.1 Let N = (S,0, 2, F, My) be anet. LeD® = {t |t € O, |*t| > 1}.

Thesymmetrically asynchronous implementatanV is defined as the net
SI(N) := (SUS™,0,U’, F', M) with

= {s; |t € O s et}
U= {t; |t € O’ s € *t}and
Fl= Fn ((OXS)U(SX (O\Ob))>
U{(s,ts), (ts, 51), (54,1) | t € O, s € *t} .

An example is shown in Figure 3.
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Figure 3: The transition can be refused i8I( V) by firing the leftr.

Similar to Section 3, we user andx° when describing the flow relation of the implementation.

As Definition 4.1 is only a slight variation of Definition 3.fhe lemmas and propositions abdtitin
Section 3 apply t&l as well, with minimal changes in the proofs. We will again ibegith how the
implementation can simulate the original net.

Lemma4.l Let N = (S,0,9, F, M) be aplain netG C O, € O* andM;, M, C S.

11 My Sy MythenM; gy~ Sosin) Mo
2. If My == M; thenM; =gy n) Mo.

Proof LetO’= {t|t¢€ O,|*| > 1}. Assumel; SN My. Then, by construction d8I(N),

M [{ts | te GNO°, se thgn [{t |t € G}y Ma.

The rest of the proof is identical to the proof of Lemma 3.1. O

Also similar to the fully asynchronous case, we wish to uridodffect of firing extraneous-transitions.
The function doing so is the samé™ defined earlier. We also reuse the predicatand the distance
functiond. However,d(M) is no longer astrict upper bound, or exact measure, on the number of silent
transitions that need to be fired from the markihf before no further silent transitions are possible.
Optionally, strictness can be ensured by replacing it byfuhetione, defined by

e(M):=|Mn{s|secsS, Itecs® |t >1}.
Againa(M) impliesd(M) € IN.

Lemma4.2 Let N andSI(V) be as above andif C S U S7, with M finite.
ThenVp,q € M. 7= (p) = 7 (q) = p = qiff 7= (M) gy M.

Proof This is Lemma 3.2 applied t8I(V) rather tharFI (V). The proof is identical. O

Lemma 4.3 Let N andSI(N) be as above7 C O, 0 € O*andM, M’ C SU S".
1. a(My).
2. Fa(M) A M Zgyyy M thent— (M) 5 7= (M) A a(M).
3. If (M) A M —gny M’ thend(M) > d(M') A7 (M) =77 (M') A a(M').
4. If My =gy M’ thenMy ==y 7= (M') A (M),
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Proof Thisis Lemma 3.3 applied 8I(V) rather thar1(V); the proofs of (1), (3) and (4) are identical.
(2): Supposex(M) and M isw) M’ with G C O. Sot— (M) is a reachable marking df.
Foranyt € O ands € *t we sets; := s, if |*t| > 1 ands; := s otherwise.

Lett € G. Sincet is enabled inV/, we have®t C M and hence~ (°t) C 7 (M). By construction,
°t = {5 | s € °t} soT(°t) = *t. Given that\V is contact-free, it follows thatis enabled i~ (M ).

Now lett,u € Gwith ¢t # u. If s € *t N *u thens; € °t ands, € °u, S0, §, € M. Ast andu are
independent irBI(V), we haves; # §,. However,m (§;) = s = 77 (§,), contradictinga(M ). Hence
*tN*u = (. Given that't U*u C 7 (M) and N is contact-free, it follows that als® N «* = () and
hencet andu are independent.

We will now show that<TH(M) U 't) Ul =),
teq teq
M =(M\{s|se°t,teGHU{s|set’ teG}
=(M\{5|se’t teG})U{s|set’, teG}.
Thereforer=(M') =77 (M \ {8 |s€*t, te G}) Ut ({s|s et t € G}).

Take anyt€ G and anys € *t. Thens; € M, 7 (3;) = sanda(M) impliesppe M. p # ;A7 (p) = s.
Hencer= (M \ {8 |s€*t, te€ G}) =17"(M)\ {s| s €*t, t € G}. Thus we find

T (M) =7"(M)\{s|set teG}U{s|set’ teG}

and conclude that— (M) SN T (M).

Thata(M') holds is established in exactly the same way as in the probéwfma 3.3(2), noting that in
derivingp; € °t C M we usep; € °t C M andp ¢ M. O

Proposition 4.1 Let N andSI(N) be as before and/ C SU S™.
1. M e [MO>S|(N) iff OZ(M)

2. SI(N) is contact-free.
3. SI(N) is ar-net.

Proof Identical to the proof of Proposition 3.1, using the lemm&Section 4. O
Proposition 4.2 Let N be a plain net. TheBI(V) is divergence free.

Proof This follows immediately from Lemma 4.3(3). O
Proposition 4.3 Let N andSI(N) be as before. The&# (N) C .Z#(SI(N)).

Proof Identical to that of Proposition 3.3, using the lemmas oftiact. O

Again, the only difference in behaviour between the oribived and its implementation is that observable
transitions can potentially be refused in the implemeoiatas in Figure 3. This yields a concept of a
symmetrically asynchronouet.
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Definition 4.2

The class oBymmetrically asynchronous nets respecting branching squivalencés defined as
SAB):={N |SIN) =~z N}.

We now show that plain nets can be implemented symmetrieaypchronously with respect to failure
equivalence exactly when they do not contain reachabletsies of the form shown in Figure 3.

Definition 4.3

Aplain netN = (5,0, @, F, M) has a partially reachabl®N iff Jt,uc O. t ZuA*tN®u+# &
Alul >1A3IM e [My)n.*t C MV *u C M.

Theorem 4.1 A plain netN is in SAB) iff N has no partially reachable.

Proof LetN = (S,0,9,F, My)andSI(N) = (SUS™,0,U’, F', My).

=" AssumeN has a partially reachabM. Then there exist, u € O, t # u, o € O* andM; C S such
that My == My, *tN°*u # @, |*u| > 1 and®*t C M; V *u C M;. We will show thatSI(N) %7 N.
There are two cases:

Case 17t C M: We will show that<o, {t}> € .Z(SI(N)) but <o, {t}> ¢ .#(N). As N has no silent
transitions, by Lemma 2.1 we hawd, ==y M’ only if M’ = M,. SinceM; LN it follows that
<o, {t}> ¢ F(N).

On the other hand}/ :U>5|(N) M; by Lemma 4.1. Lep € *t N *u. Then, by construction dbl(V),
there exists an\l, C S U S™ W|th Ml[{up}>M2, P, ¢ M, and sincet # w alsop; ¢ M,. Now let
M3z C S US™ such thath, —>5|(N) M3 A Ms 4—>S|(N (which ems}s}accordmg to Proposition 4.2).
SinceVv e U'. p ¢ v® A (pr €v® = p € *v) we havep, ¢ Ms. ThusM; -+ and <o, {t}> € .Z(SI(N)).

Case 2°¢ ¢_ M: Then®*u C M. Thus3q € *t\ *u, so|*t| > 1. This case proceeds as case 1 with the
roles oft andu exchanged.

“<" AssumeN ¢ SAB). ThenZ(SI(N)) # .%(N) and henceZ (SI(N)) \ % (N) # @ by Propo-
sition 4.3. Let <o, X > € Z(SIN)) \ .#(N). Then there exists an/; C S U S” such that
My =Zogyny My, My < andvi € X. M, +2. By Lemma 4.3(4) we havaly ==y = (M)).

Lett € X such that~— (M) ﬁ»N (which exists, otherwise<o, X> € .#(N)). Letp € *t such that

pr ¢ M, (such ap exists, otherwisé\/; {—t}>5|(N ). Sincer (M) {L}W it follows thatp € 7 (M;).
Butp ¢ My, for otherwisep # p, and M; —>SI(N)1 which would be a contradiction. Hence there must
exists some;, € O with p,, € M; andu # t. By construction ofSI(N) we havep € *u and|®u| > 1.
Thust,u € ONt #uAtNu # DA |*ul > 1ATT (M) € [Mo)ny Nt C 7 (M), SON has a
partially reachabléN. O

The following proposition shows that the current class @$strictly extends the one from the previous
section.

Proposition 4.4 FA(B) C SAB).

Proof A net without partially reachable conflict surely has no iadlst reachableN. The inequality
follows from the example in Figure 2. O
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I Y AVA

2] 2] [ a] [o] [<]

N ¢ FC N ¢ FC N ¢ FC

N ¢ EFC N € EFC N ¢ EFC
N € SAB) N ¢ SAB) N ¢ SAB)
N € BFC N € BFC N € BFC

Figure 4: Differences between various classes of freeeehlike nets
It turns out that our class of ne®A B) is strongly related to the following established net clagge3].

Definition 4.4 Let N = (S,0, @, F, My) be a plain net.

1. Nisfree choice N € FC,iff Vp,qe S.p# qAp*N¢®*# = |p*| =|¢°| = 1.
2. N isextended free choic&v € EFC, iff Vp,q € S.p* N¢® # @ = p* = ¢°.

3. N is behaviourally free choiceV € BFC, iff Yu,v € O.*un®v # & =
(VMl S [M0> ‘uC M; & *vC Ml)

The above definition of a free choice net is in terms of plabasthe notion can equivalently be defined
in terms of transitions:

N e FC iff ViueT.tAuN®tN®u# o= =% =1.

Both conditions are equivalent to the requirement tNatnust beN-free, whereN is defined as in
Definition 4.3 but without the reachability clause. Also thation of an extended free choice net can
equivalently be defined in terms of transitions:

N e EFC iff Vi,bueT.*tN%u # @ = *t ="u.

This condition says thaV may not contain what we callgure N: placesp, ¢ and transitionsg, v such
thatp € *t N °u, ¢ € *uandq ¢ °t.

In [3] it has been established thBC' C EFC C BFC. In fact, the inclusions follow directly from the
definitions, and Figure 4 displays counterexamples totstrs.

The class of free choice nets is strictly smaller than thesclef symmetrically asynchronous nets re-
specting branching time equivalence, which in turn is sgrismaller than the class of behavioural free
choice nets. The class of extended free choice nets andahg of symmetrically asynchronous nets
respecting branching time equivalence are incomparable.

Proposition 4.5 FC C SAB) C BFC, EFC ¢ SA(B) andSA(B) ¢ EFC.

Proof The firstinclusion follows because a partially reachaie surely arN, and also the second in-
clusion follows directly from the definitions. The four ingalities follow from the examples in Figure 4.
The first net is unmarked and thus trivially 8 B). The second ones symmetrically asynchronous
implementation has the additional failukes, {a, b}> and hence this net is not BAB). O
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FC
/N
" O

/ N

EFC # SA(B)

AN /
© ”
N /S

BFC

Figure 5: Overview of free-choice-like net classes

In Figure 5 the relations between our semantically definddclessSAB), the structurally defined
classes'C', EFC, and the more behaviourally defined clds8C' are summarised. These relations may
be interpreted as follows.

Starting at the top of the diagram, free choice nets are cteised structurally, enforcing that for ev-
ery place, a token therein can choose freely (i.e. withogaiiing about the existence of tokens in any
other places) which outgoing arc to take. This property mdiqgossible to implement the system asyn-
chronously. In particular, the component which holds tlieriation represented by a token can choose
arbitrarily when and into which of multiple asynchronoudput channels to forward said information,
without further knowledge about the rest of the system. AsdBcision is solely in the discretion of the
sending component and not based upon any knowledge of thef tae system, no synchronisation with
other components is necessary.

The difference betwee8A B) and F'C is that inSAB) the quantification over the places is dropped,
making the requirement more straightforward: Every tokan choose freely which outgoing arc to
follow. Thus,SA(B) allows for non-free-choice structures as long as thesermeueive any tokens.

This also explains whyBFC includesSAB). SinceSA B) guarantees that all transitions of a problem-
atic structure are never enabled, transitions in suchtsieg are never enabled while others are disabled.

The incomparability between the left and the right side @f diagram stems from the conceptual al-
lowance of slight transformations of the net before evagatvhether it is free choice or not. Extended
free choice nets and behavioural free choice nets were peopas nets that are easily seen to be be-
haviourally equivalent to free choice nets, and hence stamee of their desirable properties: in [2, 3]
constructions can be found to turn any extended free ch@této an equivalent free choice net, and
any behavioural free choice net into an extended free ctmaiteApplied on the last two nets in Figure 4
these constructions yield:

©O— 7 [—®
[a}—O—¢]

Figure 6: Transformed nets from Figure 4
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p @q 5

O

Figure 7: Transformation to asymmetric asynchrapguch thap <§ S <§ q.

For the second net of Figure 4atransition is introduced, which collects both tokens amehtmarks

a single postplace from which the two original transitiome anabled. Hence the choice between the
two transitions is centralised in the newly introduced pland thus free again. In the definition of
our symmetrically asynchronous implementati®h we do not allow any insertion of such “helping”
T-transitions, as it seems unclear to us how much computingpshould be allowed in possibly larger
networks of such transitions. This becomes especially lpnodtic if these networks somehow track
part of the global status of the net inside themselves arglritiake quite informed decisions about what
outgoing transition to enable.

5 Asymmetric Asynchrony

As seen in the previous section, the class of symmetricaimehronous nets is quite small. It precludes
the implementation of many real-world behaviours, like timgi for one of multiple inputs to become
readable, a Petri net representation of which will alwaytuide non free-choice structures.

Therefore we propose a less strict definition of asynchraie shat actions may depend synchronously
on a single predetermined condition. In a hardware impléatiem the places which earlier could always
forward a token into some silent transitions must now waitl tiney receive an explicit token removal
signal from their posttransitions.

To this end we introduce a static priority over the preplagsksach transition. Every transition first
removes the token from the most prioritised preplace and doatinues along decreasing priority. To
formalise this behaviour in a Petri net we insert a silemgitéon for each incoming arc of every transi-
tion. These silent transitions are forced to execute inesecg by newly introduced buffer places between
them. In the final position of this chain, the original vigitiransition is executed. An example of this
transformation is given in Figure 7.

1In [2, 3] the nature of the equivalence between the original mansformed net is not precisely specified. However, it
can be argued that whereas the transformation fEb@-nets toFC-nets preserves branching time as well as causality, the
transformation fronBFC-nets toEFC-nets preserves branching time only: the third net of Figueeinterleaving bisimulation
equivalent with itsEFC-counterpart in Figure 6, but whereas the original net cafopa the transitions andc concurrently
(in one step), the transformed net cannot.
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Definition 5.1 Let N = (S,0, @, F, My) be a plain net.
Letg C (S x O) x (S x O) be arelation o' N (S x O) such that for each € O we have that
g N (°t x {t}) is a total order ot x {t}. Let <! be the total order ofit given byp <! s iff
((p, 1), (s,1)) € g-
We write min;, for the <!-minimal element ofz and (s — 1), for the next place irt¢ that is
gg-smaller thars.

We define a set of silent transitions &s:= {t; | t € O, s € *t}.
Leth : X — X U O be the function
t

ht.) = t iff s = .ming
ts otherwise

The asymmetrically asynchronous implementation with respegt of N is defined as the net
Aly = (SUST,0,U', F’', My) with
ST = {s|t€O, se"’t, s#mintg},
U':=hX)\O={ts |t €0, se"t, s#mintg} and
F':= FNn(OxS9)
U{(s,(ts)) |t €O, se’t}
U{(ts,s:) |t€O,se®, sz min}}
U{(st,h(ty)) |t €O, s €t s# mintg, p=(s— 1)2} .

As before, we are interested in the relationship betweenarat their possible implementations. The def-
inition of asymmetric asynchrony however allows differenplementations for the same net. We show
that the lemmas and propositions from the previous sectiany over for all possible implementations.
As in the earlier sections, we start by showing how the impgletation simulates the original.

Lemmab5.1 Let N = (5,0, 9, F, M) be a plain net C O, o € O*, M, M, C S andg as above.

G Tk G
1. If My — N M thenMy — vy~ a1, (V) Mo

2. If My =% N M, thenl; :U>AIQ(N) Ms.

Proof LetAly(N) = (SUS7,0,U’, F', My). Assumel; S, My. Then, due to the restrictions
on g, there exists a sequence of pairwise disjoint nonempty&gt&'s, ..., G,, C U’ such thatvt € G,
sE®, s # minz Ji, 1 < i < n. tyeGandVt, € G;, t, € Gj, i < j. (t,p) zg (t,q). By the
construction ofAl,(N) then

My [Gr)a, vy [Go)ayovy - [Gr)ay vy [G)ary vy Mo -

All non-final steps of that execution can be split into a segeeof singletons.
The second statement follows by a straightforward indaatio the length of. O

As for the symmetrical case, we wish to push back all tokenS’oim a marking to their roots i¥. This
time, however, multiple silent transitions need to be uron

Definition 5.2 Let N = (S,0, @, F, My) be a plain net and l&kl,(N) = (SUST,0,U’, F', My).
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7S P(SUST) — P(S) is the function defined by

TEM):=(MNS)U{s|FHecO. setAIppeMNST. p<l s} .

Given a reachable markinty of the implementation;< will produce a reachable marking of the orig-
inal net, which by Lemma 5.1 is also a reachable marking ofrttdementation, from whicti/ could
have arisen by firing some of the added unobservable transitiNote that<(°t) = *¢ for anyt € O.
The application ofr< is only meaningful for markings where no two elementsSéfhave originated
from the same transition. However, implementations of aciifree nets produce only reachable mark-
ings which fulfil this condition, as we will show below.

We now give the invariant predicatethat characterises the markings of an implementation trate
obtained from a reachable marking of the original net by disome unobservable transitions.

Definition 5.3 Let N = (S,0,, F, My) be a plain net andl,(N) = (SUS™,0,U’, F’', My).
The predicatey C P(S U S7) is given by

V(M) = 75 (M) € [Mo)y AVp,ge MoT=({pH)NT=({a}) #@ =p=4q.
Note thaty(M) implies f (M) € IN.

Lemma5.2 Let N andAl, (V) be as above antl/ C S U S™, with M finite.

T o%

ThenVp,q € M. 7=({p}) N7=({q}) # @ = p = qiff 75(M) —p, M.

Proof Given thatr= (M) C S, “if” follows directly from the construction oAl (V).

For “only if”, assumeVp,g € M. 7<(p) N 7(q) # @ = p = q. LetG; = {t; | s € M} and
Gip1:={tp | 3tq € Gi. ¢ = (p— 1)} fori > 1. The assumption guarantees thatG@lare disjoint.
SinceM is finite, and®t is finite for all¢ € O, there must be an > 0 such thai&; = 0 iff : > n. Now
T(M) [Gr)a, vy [Ga=1)a1,(v) -+ [G1)a, vy M. O

Lemma5.3 Let N andAl,(N) be as abovely C O,0 € O*andM, M’ C SUS".
1. v(Mo).
2. v (M) A M Sop, vy M thenr=(M) Sy 75 (M) Ay (M),
3. Ify(M) A M —p, vy M’ thend(M) > d(M') AT5(M) = 75 (M) Ay(M).
4. If My == p,(v) M’ thenMy == 75 (M) Ay (M).

Proof (1): My € [Mp)ny andVs € My C S. 7<({s}) = {s}.
(2): Supposey(M) and M iAIg M’ with G C O. SoT=(M) is a reachable marking @¥.

Lett € G. Sincet is enabled inV/, we have®t C M and hence-<(°t) C 7<(M). By construction,
7<(°t) = *t. Given thatN is contact-free it follows thatis enabled in-<(M).

Now lett,u € Gwitht # u. If s € *t N *uthens € 7<(°t) N 7= (°u) but sincet,u € G, °tN°u =@
and°t U °u C M, contradictingy(M). Hence®t N *u = @. Given that*t U *u C 7<(M) and N is
contact-free, it follows that als® N «* = @ and hence andwu are independent.
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We will now show that<7<:(M) U 't) Ul =r=1).
teG teG

By Definition 5.2 we have = (M) = (J,c,, 7 ({s}) forany M C SUS™. Moreover, when\/ satisfies
~(M) this union is disjoint. In that case, for any $6tC M we haver<(M \Y) = 7<(M) \ 7<(Y).

M =(M\{s|se’t,teG}HU{s|set’ teG}.
Therefore

TEM) =(TS(M\T5{s|set,teGH)UT"({s|set’, teG})
=T "(M)\{s|se’, teG}HU{s|set’ teG}.

Next we establish/(M'). As in the proof of Lemma 3.3(2) we may assume tRas a singleton seft}.
Above we have shown that=(M') € [My)y. We still need to prove that=({p}) N 7<({q}) # @ =
p = qforall p,q € M'. Assume the contrary, i.e. there argy € M’ with 7<= ({p}) N 7=({¢}) # @ but
p # q. Sincey(M), at least one op andg—sayp—must not be present it/. Thenp € t° =t* C S.
Ast=({q}) N T=({p}) # 9, 7=({p}) = {p} andq # p it must be thay € S”. Henceq ¢ t°, so
g€ M,andp € 7=({¢}) € 7<(M). As shown above;, is enabled in-<= (M ). By the contact-freeness
of N, (t=(M) \ *t) Nt* = @, sop € *t. Sincep ¢ M, there exists a place, € (°tNS") C M
with p € 7<({r:}). By constructiont° N S™ = &, so we have;, ¢ M’, henceq # r,. However,
p € 7<{q}) NT=({r¢}), contradictingy(M).

(3): Letts € U’ such thatM [{ts})a,(nv)M'. Then®t; NS = {s} ands® # @. Ast,° NS = &, no
element oft;° contributes tal(M’) and hencel(M') = d(M) — 1.

If °ts C Sthent=(M') = 75((M \ °ts) Uts®) = 75((M \ {s}) U{s:}) = 7<(M). Otherwise let
p € Ssuchthap; € °t,. Thent=(M') = 75 ((M \°ts)Uts°) = 7 (M \{s,pt}) U{s¢}) = 7=(M).
Moreover,y(M') < ~(M).

(4): Asiin Lemma 3.3. O

Proposition 5.1 Let N andAl,(N) be as before and/ C S U S™.
1. M € [Mo)a, vy iff v(M).
2. Aly(N) is contact-free.
3. Aly(N) is at-net.

Proof (1): Identical to the proof of Proposition 3.1(1), using tammas of Section 5.
(2): LetM € [Mo)ai,(v)- Theny(M), and hence= (M) € [Mo) .

Consider any € O with °t C M. Assume(M \ °t) Nt° # &. Sincet® = t* C S'letp € S be such that
p € M Nt°andp ¢ °t. As N is contact-free we have= (M) \ *t) Nt* = (), so sincep € 7= (M) N¢*
it must be thap € °t. Hence, using that ¢ °t there must be ag; € °t C M with s gg p, and hence
p €175 ({s}). We havep # s, yetp € 7<= ({p}), violatingy(M).

Now consider any,, € U’ with °t,, C M. Asp € °t, andt,® = {p;} we have thatM \ °t,) Nt,° # @
only if p € M Ap, € M. However,r<({p}) = {p} € 7=({p¢}) which would violatey ().

(3): Identical to the proof of Proposition 3.1(3). O

Proposition 5.2 Let N be a plain net and as before. TheAl,(N) is divergence free.

Proof This follows immediately from Lemma 5.3(3). O
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Proposition 5.3 Let N andAl, (V) as before. Thew” (V) C .7 (Aly(N)).
Proof Identical to that of Proposition 3.3, using the lemmas oftiad. O

We define a net to basymmetrically asynchronoifsany of the possible implementations simulates the
net sufficiently.

Definition 5.4

The class ofhsymmetrically asynchronous nets respecting branchimg gquivalencés defined
asAAB) :={N | Jg. Al4(N) =~z N}.

As before, we would like to obtain a semi-structural chagasation ofAA(B) in the spirit of Theo-
rems 3.1 and 4.1. Unfortunately we didn't succeed in this vl obtained structural upper and lower
bounds for this net class.

Definition 5.5

AnetN = (S,0,9,F, M) has a left and right reachabl# iff 3t,u,v € O Ip € *t N *u
dgeunv. t£uANu#vAp#qgAIMy, My € [My). *tUu C My A®vU%u C M.

AnetN = (S,0,9, F, My) has a left and right border reachabM iff 3¢,u,v € O Ip€*tN°u
dge®un®v. t#uhu#vAp#qgAIMy, My € [My). *t C My A*v C M.

Theorem 5.1
A plain net N in AA(B) has no left and right reachalilé.

Proof Let N = (S,0,9,F, My). AssumeN has a left and right reachabM. Then there exist
t,u,v € O andp,q € Ssuchthap € *tN°u,q € *un®v,t# u,u# v, p# qand there are reachable
markingsM,, M» € [My) such thattU®u C M; and®*vU*u C M. We will show thatAl,(N) %7 N,
regardless of the choice of

The problematic transition will be. Eitherp >¢ ¢ or ¢ > p. Due to symmetry we can assume
the former without loss of generality. §0# ming. We know that there is some € O* such that
My =%y M; At C M. By Lemma 2.1 it follows thako, {t}> & .Z(N).

By Lemma 5.1 alsd// :U>A.H(N) M. Letpo,...,p, € Ssuchtha{s € *u | p <{ s} = {po,---,Pn}
with po = pandp;_1 = (p; — 1); for 2 < i < n. Since*u C M, there thus exists an/] with
My [{up, })a, vy [{tp, 1 D) (v) - [{upo i, (vy M7 . Note thatp, € Mj. By Propositions 5.2 there
exists anM{’ with M| = ) M{' A M} ~u,,(x), and Proposition 5.1(1) yields(M}").

From the construction oAl,(N), using thatp, € Mj, it follows that3s € *u. s <[ p A s, € M.
Moreover,p € 7 ({s,)}. We also have € *t = 7=(°t), sodr € °t. pe 7=({r}). Asy(M7), we
haver ¢ M{', and thus’t ¢ M. Therefore<c, {t}> € .Z(Al4(N)). HenceN is notinAA(B). O

Theorem 5.2
A plain net N which has no left and right border reachaMes in AA(B).
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Figure 8: Nets which have a left and right border reach&hleut no left and right reachabld

Proof LetN = (S,0,2,F, M,). Given a transition.€ O, we say that a-conflict occursn a preplace
p€®uwhendt e p®. t #u N (IM; € [Mo)n. *t C My)).

AssumelN has no left and right border reachaltlle This means that every € O has at most one
preplace where am-conflict occurs. Now choosg C (S x O) x (S x O) such that for alk € O, ming
is that single place, if it exists. Létl,(N) = (SUS7,0,U’, F', My).

We prove that# (N) = % (Al,(NN)). From Proposition 5.3 we already have tatN) C .7 (Aly(N)).
Therefore consider a failure paito, X> € .#(Al4(N)). We need to show thato, X> € .Z#(N).

There exists somé&/; C S U ST with M, :">A|g(N) Mi A My = AVt e X. M, AUN By Lemma5.3

My == N 7(M7). Now take anyt € X. Assumer (M) {—t}w. Then°t € M, but®t C 7 (My).
By construction ofr= we havevp € *t. pe M1 V3Iu € O. pe*uAds, € M1 NS™. s <{ p.

Now suppose we hadp € *t. p € M; V 3s; € M1 N S7. s <}, p. Then°t C Mj, using M, U
Hencedp€®tdue€ 0. u#tAp€®unds, € MiNS". s <y p.

But thent € p* At # u A T(M1) € [Mo)n Nt C 7(M;), so au-conflict occurs inp € *u. Yet
Js < p. s, € ST implies thats # miny and hence # ming, by the construction oAl,(N). This
however contradicts our construction fpgiven above. Hence*(M;) - . Applying this argument
forall t € X yields <o, X> € .#(N) and therebyZ (Al,(N)) C .#(N). ThusN € AA(B). a

Figure 8 shows two nets, each with a left and right borderralaleM but no left and right reachabM,
that thus fall in the grey area between our structural uppei@ver bounds for the clagsA(B). In this
case the first net falls outsid®A( B), whereas the second net falls inside. The crucial diffexrdretween
these two examples is the information available: @bout the execution af.

There exists an implementation for the right net, namely:kigking the tokens from, ¢ ands in that
order. The first token (from) conveys the information that was executed, and thiss not enabled.
Collecting the last token (from) could fail, due tov removing it earlier. Even so, removing the tokens
from r and ¢ did not disable any transition that could fire in the originat. In the left net such an
implementation will not work.

The following proposition says that our class of symmeliycasynchronous nets strictly extends the
corresponding class of asymmetrically asynchronous nets.

Proposition 5.4 SAB) C AA(B).
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o
2]

Figure 9:N € AA(B), N ¢ ESPL

Proof A net which has no partially reachabi¢ also has no left or right border reachaltfe The
inequality follows from the example in Figure 3. O

As before, our clasAA(B) is related to some known net classes [3].

Definition 5.6 Let N = (S,0, @, F, M) be a plain net.
1. Nissimple N € SPL,iff Vp,qe S.p#qAp*Ng* # = p*|=1V|¢*| = 1.
2. N isextended simpjeV € ESPL, iff Vp,q e S.p* N¢®* # & = p®* Cq* VvV ¢® C p°.

Extended simple nets appear in [2] under the nasygmmetric choice system$lote that simple is
equivalent toM-free, whereM is as in Definition 5.5 but without the reachability claus€early, we
haveFC' C SPL C ESPLandEFC C ESPL, whereasEFC' ¢ SPLandSPL ¢ EFC': the inclusions
follow immediately from the definitions, and the first two si@f Figure 4 provide counterexamples to
the inequalities.

The class of asymmetrically asynchronous nets respectagching time equivalence strictly extends
the class of simple nets, whereas it is incomparable witltldss of extended simple nets.

Proposition 5.5 SPL C AA(B), AA(B) ¢ ESPLandESPL ¢ AA(B).

Proof The inclusion is straightforward, and the inequalitieddi@l from the counterexamples in Fig-
ure 4 (the second one) and Figure 9. The missing tokens ittee eExample are intended. As no action
is possible there will not be any additional implementafaifures. O

The relations between the class&8L, ESPL and AA(B) are summarised in Figure 10. Similarly to
what we did in Section 4, we now try to translate Figure 10 ardntuitive description.

The basic intuition behindPL is that for every transition there is only one preplace whareflict
can possibly occur. Whereas $#PL that possibility is determined by the static net structimédA(B)
reachability is also considered.

Similar to the difference betwednC' and £ F'C there exists a difference betwe8§PL andSPL which
originates from the fact thafSPL allows small transformations to a net before testing whathies in
SPL. Again our clas®A(B) does not allow such “helping” transformations.

SPL

/ N\
e O
/ \

ESPL — # — AA(B)

Figure 10: Overview of asymmetric-choice-like net classes
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6 Conclusion and Related Work

We have investigated the effect of different types of asymebus interaction, using Petri nets as our
system model. We propose three different interaction pattdully asynchronous, symmetrically asyn-
chronous and asymmetrically asynchronous. An asyncheoimoplementation of a net is then obtained
by inserting silent (unobservable) transitions accordmthe respective pattern. The pattern for asym-
metric asynchrony is parametric in the sense that the aagyaichronous implementation of a net de-
pends on a chosen priority function on the input places ofasition. For each of these cases, we
investigated for which types of nets the asynchronous imptgation of a net changes its behaviour
with respect to failures equivalence (in the case of asymmasynchrony, the ‘best’ priority function
may be used). It turns out that we obtain a hierarchy of Petriclasses, where each class contains
those nets which do not change their behaviour when tramsfinto the asynchronous version accord-
ing to one of the interaction patterns. This is not surpgdiecause later constructions allow a more
fine-grained control over the interactions than earliersone

We did not consider connections from transitions to thestplaces as relevant to determine asynchrony
and distributability. This is because we only discussedauirfree nets, where no synchronisation by
postplaces is necessary. In the spirit of Definition 3.1 waddnsertr-transitions on any or all arcs
from transitions to their postplaces, and the resultingyaild always be equivalent to the original.

Although we compare the behaviour of a net and its asynchimimplementations in terms of fail-
ures equivalence, we believe that the very same classesoareobtained when using any other rea-
sonable behavioural equivalence that respects brancinirgtd some degree and abstracts from silent
transitions—no matter if this is an interleaving equivakenor one that respects causality. We would
get larger classes of nets, for example for the case of fyli@sony including the net of Figure 2, if
we merely required a né¥ and its implementation to be equivalent under a suitabl\sehdinear time
equivalence. This option is investigated in [18].

The central results of the paper give semi-structural cterigations of our semantically defined classes
of nets. Moreover, we relate these classes to well-knowmaslidunderstood structurally defined classes
of nets, like free choice nets, extended free choice netsiamgle nets.

To illustrate the potential interpretation of our resuitother models of distributed systems, we give an
example.

Message sequence cha(fdSCs), also contained in UML 2.0 under the name sequenggaliss, are

a model for specifying interactions between componeimstgncey of a system. A simple kind are
basic message sequence chdB81SCs) as defined in [12], where choices are not allowed. #%iPe
net semantics of BMCSs with asynchronous communicationsamdique sending and receiving event
for each message will yield Petri nets with unbranched gldsee for instance [9]). Hence in this case
the resulting Petri nets are conflict-free and thereforly fagsynchronously implementable according to
Theorem 3.1.

However in extended versions of MSCs, e.g. in UML 2.0 or ir Isequence charts (LSCs, see [10]),
inline expressions allow to describe choices between pledsehaviours in MSCs. Consider for example
the MSC given in Figure 11 and a naive Petri net representatithe instances il and i2 can either
communicate or execute their local actions. Obvioushg thguires some mechanism in order to make
sure that the choice is performed in a coherent way (see7@ fpr[a discussion of this type of problem).
In the Petri net representation, we find a reach&hléence with Theorem 4.1 the net does not belong
to the classSA(B) of symmetrically asynchronously implementable nets. He@#ethe net isM-free,
and thus does belong to the clas8(B) of asymmetrically asynchronously implementable nets. By
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Figure 11: An MSC and a potential implementation as Pettiwbich has arN.

giving priority to the collection of the message token (cking the appropriate functiogin our notion
of implementation), it can be assured that instance i2 doesnake the wrong choice and gets stuck
(however it is still not clear whether the message will altyuze consumed).

The obvious question is whether the naive Petri net intéapon we have given is conform with the
intended semantics of tladt-construct (according to the informal UML semantics theratives always
have to be executed completely; in LSCsiit is specified eitlglwhether messages are assured to arrive).
However, on basis of a maybe more elaborate Petri nets siesjahtould be discussed what types of
MSCs can be used to describe physically distributed systemparticular which type of construct for
choices is reasonable in this case.

Another model of reactive systems where we can transfer esults to are process algebras. When
giving Petri net semantics to process algebras, it is ameistiag question to investigate which classes
of nets in our classification are obtained for certain typesperators or restricted languages, and to
compare the results with results on language hierarchgesufamarised below).

We now give an overview on related work. A more extensiveldision is contained in [18]. We start by
commenting on related work in Petri net theory.

The structural net classes we compare our constructionsete all taken from [3], where Eike Best
and Mike Shields introduce various transformations behwfese choice nets, simple nets and extended
variants thereof. They use “essential equivalence” to @mthe behaviour of different nets, which they
only give informally. This equivalence is insensitive toveligence, which is also relied upon in their
transformations. As observed in Footnote 1, it also doegregerve concurrency. They continue to
show conditions under which liveness can be guaranteedaifoe ®f the classes.

In [1], Wil van der Aalst, Ekkart Kindler and Jorg Desel imdiuce two extensions to extended simple
nets, by allowing self-loops to ignore the discipline impddy theESPL-requirement. This however
assumes a kind of “atomicity” of self-loops, which we did atibw in this paper. In particular we do not
implicitly assume that a transition will not change the estat a place it is connected to by a self-loop,
since in case of deadlock, the temporary removal of a tokem such a place might not be temporary
indeed.

In [17] Wolfgang Reisig introduces a class of systems whimmmunicate using buffers and where the
relative speeds of different components are guaranteeeé todlevant. The resulting nets are simple
nets. He then proceeds introducing a decision procedutbdgrroblem whether a marking exists which
makes the complete system live.

The most similar work to our approach we have found is [11]emRichard Hopkins introduces the
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concept ofdistributable Petri Nets. These are defined in termdafality functions which assign to
every transitiont a set of possible machines or locatiobh&) on whicht may be executed, subject to
the restriction that a set of transitions with a common @eplmust share a common machine. A plain
net N is distributable iff for every locality functiorl. that can be imposed on it, it has a “distributed
implementation”, a-net N’ with the same set of visible transitions, in which each titasis assigned
a specific location, subject to three restrictions:

e the location of a visible transitiohis chosen fronY.(t),

e fransitions with a common preplace must have the same docati

e and there exists a weak bisimulation betweéérand N/, such that allr-transitions involved in

simulating a transitiom from N reside on one of the locatiorgt).

The last clause enforces both a behavioural correspondesteeeenN and N’ and a structural one
(through the requirement on locations). Thus, as in our wtr& implementation is a-net that is
required to be behaviourally equivalent to the original. nefowever, whereas we enforce particular
implementations of an original net, Hopkins allows implertagions which are quite elaborate and make
informed decisions based upon global knowledge of the nets€quently, his class of distributable nets
is larger than our asynchronous net classes. As Hopkins,ndwe to his use of interleaving semantics,
his distributed implementations do not always display #rae concurrent behaviour as the original nets,
namely they add concurrency in some cases. This does nadh@ppur asynchronous implementations.

Another branch of related work is in the context of distrézlialgorithms. In [5] Luc Bougé considers
the problem of implementing symmetric leader election i $hblanguages of CSP obtained by either
allowing all guards, only input guards or no communicatioamgls at all in guarded choice. He finds that
the possibility of implementing it depends heavily on theisture of the communication graphs, while
truly symmetric schemes are only possible in CSP with inpdt@utput guards.

Quite a number of papers consider the question of syncheowersus asynchronous interaction in the
realm of process algebras and thealculus. In [4] Frank de Boer and Catuscia Palamidesssiden
various dialects of CSP with differing degrees of asynchrom particular, they consider CSP with-
out output guards and CSP without any communication basaddgu They also consider explicitly
asynchronous variants of CSP where output actions canock bile. asynchronous sending is assumed.
Similar work is done for ther-calculus in [16] by Catuscia Palamidessi, in [15] by Uwe ftemn and

in [8] by Dianele Gorla. A rich hierarchy of asynchronousalculi has been mapped out in these pa-
pers. Again mixed-choice, i.e. the ability to combine inpotl output guards in a single choice, plays a
central role in the implementation of truly synchronousdébur. It would be interesting to explore the
possible connections between these languages and oungsts!

In [19], Peter Selinger considers labelled transition esyst whose visible actions are partitioned into
input and output actions. He defines asynchronous impletiens of such a system by composing it
with in- and output queues, and then characterises thensgsteat are behaviourally equivalent to their
asynchronous implementations. The main difference withapproach is that we focus on asynchrony
within a system, whereas Selinger focusses on the asyrmiwsomature of the communications of a
system with the outside world.

Finally, there are approaches on hardware design wherelagyrous interaction is an intriguing feature
due to performance issues. For this, see the papers [13]dhdy Leslie Lamport. In [14] he considers
arbitration in hardware and outlines various arbitrafii@e “wait/signal” registers. He notes that nonde-
terminism is thought to require arbitration, but no prodfriswn. He concludes that only marked graphs
can be implemented using these registers. Lamport thesdimtes “Or-Waiting”, i.e. waiting for any of
two signals, but has no model available to characteriseethgting processes. The used communication
primitives bear a striking similarity to our symmetricaligynchronous nets.
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